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Abstract-There is no consensus of opinion on the correct expressions for shear stiffness. even in
the apparently simple case of rectangular sections made from homogeneous isotropic material. A
general beam theory has been proposed which is applicable to all regular prismatic systems. This
has been used to find the appropriate beam-like l1exibilities for trusses. The same approach can be
used for normal beams. gIving values for the shear stiffnesses of various cross-sections as particular
results of a general theory embracing torsion. b:nding. extension and shear of regular prismatic
systems.

I. INTRODUCTION

It is perhaps surprising that even the macroscopic behaviour of a beam with a rectangular
section made from homogeneous. isotropic. linearly-clastic material is not genef<llly under
stood. At least four different values for the shear stiffness of such a beam have been
suggested. in addition to Gil where G is the shear modulus of the material and A is the
area of the section, These arc

• GA/1.2 (Washizu. 1(68).
• GA/1.5 (Timoshenko and Goodier. 1(70).
• GA(I-\'~) (Lowe. 1(71).
• 10GA( 1+ \')/3(S + 5v) (Donnell. 1975).

where v is Poisson's ratio. Problems arise in dclining what the shear behaviour is. and in
trying to differentiate the shear deflection from some local rigid-body rotation of the beam.

Consider the behaviour of a thin rectangular beam of depth" in a state of plane stress
induced by an exponentially decaying distributed load q. applied to the top surface of the
beam. where

q = qoc- U
:

1h
•

=being measured along the axis of thc beam. A solution to this problem is given by

(1:: = [A (sinkx+kxcoskx)+8(1coskx-kxsinkx)]e- k
:

t:, = [Akxsin kx+ 8(sinkx+kxcoskx») e- t
:

(1\, = [A (sinkx-kxcoskx)+8kxsinb']e t:

whcre

k = a/"

A = '10 (sin a + a cos Cl)/(a~ - sin ~ a)

8 = - '100 sin a/(a~ - sin ~ a)
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(a) (b)

Fig. I. Stress distributions for (l = I. (a) A.\ial stress. 11". (bl Shear stress. f".

(0) (b)

!'ig. 1. Stress lhslflhuliuns fur l/ = Ill. (al/hia' slress, " ,. (h) Shear slress. f".

und X is the distunce upwards from the base of the beam. Figures la and Ib show the
bending and shear stress distributions respectively for the case when II is unity. These are
close to the lineur bending stress and parubolic shear stress distributions normally assumed
in the engineering theory of beams. However, suppose that the value of {/ is increased to
10. The bending and shear stress distributions arc now given by Figs 241 and 2b. respectively.
Clearly, the ordinary engineering theory of bending is no longer applicable. It will be argued
that. in the latter case. the applied loading is v,trying so rapidly that the beam is unable to
settle down to its "charucteristic" response. Such a characteristic response m.lY be infcrn:d
from St Venant's principle.

A generalization of beam theory was previously proposed (Renton, 1984) which was
applicable to any regular prismatic system. including both beams and trusses. The usual
starting point for isotropic beam theory. that plane sections remain plane. was not only
meaningless in such a general context. but found to be incorrect for certain anisotropic
beams (Renton. 1987). Implicit in the use ofa beam theory is the assumption that the beam
responds in a characteristic way to a resultant load. regurdlcss of the details of the wuy in
which that load is applied. From St Venant's principle. the system should settle down to a
characteristic response to a resultant load at large distances from the zone where the load
is applied. If the resultant load is a bending moment, torque or axial force. its effect remains
constant along the system and so the characteristic response must be one of constant stress
and strain. For isotropic beams. it can be shown that this leads to the condition of plane
sections remaining plane in bending and under axial force. and to St Venant's theory of
torsion.

If a shear force is applied to the end of a beam. the state at large distances from the end
cannot be a steady state ofstress and strain. as the shear force will induce a linearly-varying
moment, Instead. the state is characterized by a bending stress distribution which varies
linearly with the moment. plus a constant stress distribution related to the shear force.
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Suppose that such a state has been found. giving the necessary resultant moment and shear
force and satisfying the equations of equilibrium. compatibility and zero traction on the
lateral surfaces of the beam. This must then be the unique characteristic response of the
beam at large distances from the end where the shear force is applied. If this were not so.
then some other non-decaying state would exist. corresponding to the same resultant end
loading. Taking the difference of the two states would then give a non-decaying state of
stress corresponding to zero resultant applied end loading. thus contravening St Venant"s
principle.

The problem is then reduced to finding the appropriate rate of shear deflection from this
characteristic response. This must be distinguished from any rigid-body rotation of the bar
about some lateral axis. because the shear deflection sought is due solely to an elastic
response to a shear force. As will be seen. this may be done by separating the strain energy
per unit length into bending and shear components. The latter may then be associated with
the work done by the shear force during the shear deflection of a unit length of the beam.
The shear force being known. the rate of shear deflection. and hence the shear stiffness. are
then determined.

2. SHEAR BEHAVIOUR OF ISOTROPIC BEAMS

The required characteristic behaviour of isotropic beams can be found in Chapter II
of Timoshenko and Goodier (1970) for example. The stress distribution induced by the
shear force S at a distance;; along the beam shown in Fig. 3 is given by

S:x
fT .• =

I

r l ·, =

when: cp is a stress function which satisfics the cLJuation

on the cross-section. /(.1') is a function such that

(X)

(9)

( 10)

( II )

(12)

on the boundary of the cross-section. where .I' is measured around the boundary. x and y

SA!; 27:1~-G

s z

l(

Fig. 3. Shear force acting on a heam.
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are the principal axes of the cross-section through its centroid and I is the second moment
of area of the cross-section about the y axis. Without loss of generality. 4> can be taken as
identically zero on the boundary.

The bending strain energy per unit length. UB• is given by the energy associated with
the linearly-varying components of stress and strain. or from (8).

(13)

where A is the area of the cross-section and E is Young's modulus. The work done per unit
length by the bending moment. M say. is

( 14)

where 1/1 is the rate of change of tlexural rotation. Defining a bending stiffness Ko and a
bending tlexibility Fu such that

( 15)

then (14) becomes

Now at a distanct: : along the bt:am

M= S:

( 16)

( 17)

so that on comparing tht: bt:IH.ling strain energy per unit length with tht: bending work done
per unitlcngth. from (13) to (17).

IF --
U - El

giving tht: usual valut: of £1 for the bending stiffness. Exactly the same result is given by
examining the constant characteristic response to an end moment M. when only the stress

Mx
(J = _..:: 1

is induced. Note that this solution is given by the differential of the shear solution with
respect to ;;. The same relationship holds for all other cases including anisotropic beam
problems; see for example Lekhnitskii (1981).

The remaining strain energy per unit length. Us. is associated with shear. From (9) and
( 10). this is given by
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(x"y,l

Fig. 4. Integration over the cross-section.

Now from Fig. 4.

bc..:ause rf> is zero on the boundary. Likewise,

so that from (19) and (20),

1959

( 18)

(19)

(20)

r[(~~)~ +(of/J)~JdA = _ rq,(iJ~~ + O~~)dA =f q,(~l_ ~- SY)dA (21)
J~ oX oy J..I o:c or ..I dy I + v I

from (II). Also

f iJrf> [ St'~] i<' [I ( St'2)!."1 f."1 dJ ] J dJ2;); J - -'- dA = 2q, J- -'- - 2q, -dy dx = - 2rf> -;dA
1/ (,.1 21 or. 21 !',", dy. d)

(22)

again. because t/J is zero on the boundary. Then from (18) to (22).

1 I[ SX
2J2 (dJ v Sy)Us =- f-- -t/J -+-- dA.

2G ,~ 2f dy I + v 1

Now Jand f/J will be proportional to S, so that it is convenient to define

(23)
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IF <t>:;;; IQ
F= S' S (24)

where F and <t> are not functions of S. Then if Ks and F~ are the shear stiffness and shear
flexibility of the section under the action of S. the work done per unit length by the shear
force on the section due to the shear deformation of the section. is

(25)

[cf. (16)]. Then on comparing the work done by the shear force per unit length with the
shear strain energy per unit length. from (23) to (25).

I I f( I ,)Z (dF n')- = Fs =-, F--x' -<1> - + -'- dA.
Ks G/' 4 2 dy I+ \' (26)

3, SHEAR STIFFNESSES OF VARIOUS SECTIONS

The following results are derived from the analyses in Chapter II of Timoshenko and
Goodier (1970).

3.1. RCC!llTlqular'vcnio".\"

For a rectangular sectioll of depth 2a and breadth 2h.

" (2m + I )n:x) . (mrl')
F= ~a~, II' = L L aZ"... L"cos .., Sill ,,'

til - 1} 11- i -(l

where

so that from (26).

I fh f" I , •• ~ '( \'1' ) (2m+ 1)1[X) , (mrr)
fs:;;; -:£ -(a--x')'- L L', a~"I'L"cos ') Sin ·······h' dxdy

GI .h ,,4 '" ~ II ,,~ I I + \ _ll

where

I = thai, A:;;; 4ha.

This gives

When \' is zero, or as hill tends to zero, this gives

I 1.2
--F -Ks - S - GA (27)

which corresponds to the result given by Washizu (1968) and Young (1989). Using the
results
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~ 1 n:~ T 1 n:~ T 1 1t~

,. ~-----, =-- . I -.;--.-~ = -, I,- = -.
m7u (_m+1)- 8 m~u(_m+l) 96.=tW 6

as b a tends to infinity. the values tend towards

I I [ (v)~ (b)~J
K

s
= Fs = GA 1.2 + 1+ \' a .

Intermediate values are given by

1961

(28)

1 \ [ ( \' )~ (b)~J
Ks = F, = GA 1.2+C t I+~' a

I I [ ( v )Z (h)ZJ
K

s
= Fs = GA 1.2+C, \ +\' ;,

where

b
- ~ 1.0
a

b
- ~ 1.0
a

(29)

(30)

c = 0.2 (h/a« 1.0). C z = 1.0 (hla» 1.0)

and somc othcr valucs arc givcn hy

hfa

0.1
0.2
0.5
1.0
2.0
5.0

10.0

3.2. Circular sections

For a circular section or radius R.

0.1939
0.IX7X
0.16lJ5
0.13lJ2 0.13lJ2

0.3511
0.6699
O.lQ29

1 •• 1-2v..
F=z(R--y-). cI>=- (R--,-)y

8( I + v)

where in terms or polar coordinates (r. 0),

y = r cos O.

Then

1 I fR f~' I 1+" ()., "I 2 _v.,.,.,., v
-;- = F.s = -, '. (R- - r') --- - -- (R' -r),- cos' 0 1- - rdOdr
hs G/- II II 2 8(I+v) I+v

where
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1[R4

1=-. A=1[R~.
4

This may be compared with the value of IO/(9GA) quoted by Young (1989).

3.3. Elliptic sections

For an elliptic section with semi-axes of lengths a and h in the directions of the x and
y axes respectively.

so that

This integration cun be curried out in two ways. One is to use the coordinate transformation

x = p sinh {I<;os IX. y = p cosh {I sin IX

where

.lOd the limits of integration ure

IX = 0 to 21[. {I = 0 to sinh- l (lI/p).

Alternutively. a double coordinate transformation can be used. where

X=x.
aJ' h

Y=~. dA = -dXdYh (I

which transforms the boundary into a circle of radius a. and then polar coordinates (r. 0)
can be used. where

x = r cos O. Y = r sin O. dX d Y = r dO dr.

This yields the same result more readily. giving

(32)

It will be seen that in the particular case when a = h. this reduces to the expression for a
circular section given by (31).

3.4. A triangular sectiol/

A closed form of solution exists for an equilateral triangular section of side 2 Jj a
made from incompressible material (v = 0.5) with a shear force acting parallel to one side.
Then
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where the side parallel to the shear force is given by y = a. After some simplification. this
gives

I 11'1 "" 4f(. = Fs = 36GI~ [r - J(2a+ y)'] (9r - 7y- - Sa- -12ay) dA = 3GA
s ,~

where

3~a~ ~
1= -2-. A =3~a .

This may be compared with the value of 6/(5GA) quoted by Young (1989).

(33)

4. SLOPE-DEFLECTION EQUATIONS MODIFIED FOR SHEAR

In conformity with the methods used to find the bending and shear stilfnesses of beams.
the slope-deflection equations may also be determined from the strain energy of a beam.
Consider a cantilever of length I. fixed at its right-hand end. B. and loaded by a clockwise
moment MI\ and upw.trds shear force F" at its left-hand cnd. A. The strain energy stored
in the beam is then

I f' I , J II I .
U'=2" E.'/(MI\+F,,:)-d:+., I' FA.d:.

tI _ n "'s

The clockwise rotation. ()~. and the upwards disphu;ement. {5~. of end A arc given by

where

12EI
s = Ks/~ .

These equations can be inverted to give MA and FA in terms of 01 and 151.

EI[ 6 ](I +s)M... =, (4+s)01- 1<>1

(34)

(35)

(36)

(37)

(3S)

(39)

Suppose that a rigid-body movement is given to the bar and the fixed end as a whole. so
that the right-hand end now has a clockwise rotation OIJ and an upwards displacement J IJ.
The rotation. 01\. and the displacement. <51\. of the left-hand end are now

(40)

Using these relationships to substitute for O~ and <5~ in (38) and (39) gives the general
results
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(41)

(42)

The clockwise end moment 1'v[a and upwards shear force Fa at the end B can be determined
from statics. giving

(43)

(44)

These equations reduce to their more normal forms on taking s as zero. which corresponds
to an infinite shear stiffness.

(I' the end moments and shear forces arc applied by a:<ial and shear stress distributions
of the characteristic form. then the slope-deflection equations arc e:<act solutions in terms
of the small deflection theory of elasticity. (I' the end loadings arc not of the characteristic
form. then from 5t Venant's principle. they will decay towards the characteristic forms
away from the ends. and the overall oehaviour of the beam. as given by the slope-det1ection
equations. will remain an appro:<imalion.

5. TilE GENERAL TIIEORY

(t should be borne in mind lhat the above results were obtained for homogeneous
isotropic beams. where the t1exural distortion is directly rdated to the bending moment
induced by the shear force and the she~lr distortion directly rebted to the shear force. The
lack of coupling means that the bending and shear stitrnesses are simply the reciprocals of
the corresponding l1exibilities. More gener.llly. a torque may produce flexure in an aniso
tropic beam (Renton. (987). or an axial force produce shear distortion in a truss (Renton.
1(84). In the latter paper. she'lr stitrnesses for trusses were found by similar energy methods
to those used above.

Allowing for all such possible couplings. the flexibility equations relating resultant
loads to their corresponding distortions become

0 III Il1 III IH 115 lib T

"'r 111 111 113 j~4 115 j~b Mr

"',. III Il1 III IH In flb M,.
=

j~l j~1 j~l j~4 j~5 j~h P
(45)

t:

f, IH f~1 fH j~4 fH j~6 S,

" J~I J~,~ I61 J~4 j~5 j~h S..I ..

where {O. "'r. "',. f.. Yr' i',I are the rates of twist. flexure about the x and y axes. axial
extension and shear distortion in the x and y directions and {T. M,. M ... P. Sf'S,.} are the
local torque. moments about the x and y axes. axial force and shear forces in the x and y
directions. To Ilnd the corresponding stiffnesses. it is then necessary to invert the whole
flexibility matrix.

tn the general case. it becomes necessary to define what is meant by the rates of twist.
flexure. axial extension and shear. as no single cross-section necessarily typilles the overall
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(a)

(bl

Fig, 5, Three adjacent segments of a prismatic system. (al Before loading. (bl After loading.

response. Figure 5 shows three adjacent identical segments of the system. These are not
necessurily brick 4 shaped as shown. but could be similar lengths of a castellated beam or
bays ofa truss. After lo"lding with"l bending moment. torque or axial force. the ch:.tr:.tcteristic
response is such that the corresponding strains in each segment are the s:.tme. The deflections
in adjacellt segments then differ only by some relative rigid-body displacemellt of the two.
Moreover. this relative motion will be the same between ..III adjacent segments. so th.1t for
example the motion of the third segment relative to the !irst is twice that of the second
relative to the first. This means that constant rutes of torsion, l1exure, extension .tnd she'lr
.tre expressed by such relative rigid-body rotations :.tnd displacements, even when the system
is regular r..tther than uniform. Thus (45) relates the complete set of such relative motions
to the complete set of resultant loads.

It follows from Betti's reciproc.t1 theorem that the mutrix is symmetrical U;, = J;,).
Suppose that in (45) the distortion ..\Ild lo"d vectors 'Ire written as {dl,d2,dJ,d4,ds,d~}

:.tnd {Ph P l , Ph 1'4. PI. P~}, respectively. The equation then takes the form

~

d, = I f,IPj (i = J -6).
)4 I

The work done per unit length. W, by the loads in deforming the system is then

This is equal to the strain energy per unit length. U. Then

(46)

(47)

(48)

Then if the strain energy per unit length can be expressed as a quadratic in terms of the
loads PI' the flexibility coefficients can be found.

Even in the most general case. a limited degree of uncoupling can be achieved. A
suitable orientation of the x and y axes can be chosen so that a moment about one axis
does not produce flexure about the other (/23 = /n = 0). The lines of action of the forces
could be redefined so that the axial force P acts along a line parallel to the =axis, through
points with coordinates (:to, Yo). and the shear forces taken to act through points with
coordinates (:te,yJ. This means that the torque and bending moments acting have to be
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redefined as r . ."1; and l"l;. where. to give the same resultant loading. they an: related to
the original loading by

I\[< = AI; +YoP

(49)

(50)

(51 )

Consider each segment of the system to have a reference plane initially perpendicular to
the; axis which undergoes the same overall rotations and displacements as the segment. A
new axial strain EO and shear strains i'~ and i'~ can be defined in terms of the relative axial
displacements of the points (xo.Yo) and shear displacements of the points (x<. yJ on these
planes. From geometrical considerations. these are

(52)

(53)

(54)

Equati(lns (49)-(54) can be used in conjunction with (45) to derive a new matrix oftlexibility
coenkienlsI,~ relating the load vector {r. M;. M~'. 1'. S,. S,.} to the distortion vector {O.
l~ ,. l/J ,. I;". y~. y~}. The symmetry of the llexibility mntrix is retained. In p.lrticular. by
choosing

X,. = (55)

lq/~: -In!'l:
X

o =In!'" - I:.Ifll
(56)

(57)

fTs. fTo, I!~ and It~ (and thercfore It,. It,. I!: and I!) an: lcro. These uncoupling
conditions can bc thought of as dcnning a "ccntroid" with coordinates (xu. Yu) and a "shear
centrc" with coordinates (x<, yJ in the most general case.

Further uncoupling can be inferred from any summetry of the system. For example,
if the system is invnri.mt under inversion of the; axis, "til the remaining coupling terms,
with the possible exception of I~6 and I65. will be zero. The cases examined in Section 3
exhibit no coupling, and thc shcar dcformation is related to the deflection of the original;
axis of thc section.

6. CONCLUDING REMARKS

Shear stilTncsses for a varicty of isotropic bars with simple cross-sections have been
found. using a generalization of engineering beam theory. All these results give shear
stilTnesses which are Icss than those quoted by Young (1989). Unlike any of the previous
results listed, the expression for the shear llexibility of a rectangular section with a constant
cross-sectional area shows that it increases in proportion to (hla): as the section becomes
a very thin. flat strip. However. since the bending flexibility of the section will increase in
proportion to hla. the result is not so surprising. Also. from (32). it will be seen that a very
broad. shallow elliptic section exhibits similar shear behaviour.

In only the case of a triangular section was the solution found in terms of a specific
value of Poisson's ratio. In all other cases. the shear stiffness can be written in the form
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where Band C are positive constants depending on the geometry of the section. and B is
greater than unity. It may be conjectured that this is the general form of the result.
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