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Abstract—There is no consensus of opinion on the correct expressions for shear stiffness, even in
the apparently simple case of rectangular sections made from homogeneous isotropic material. A
general beam theory has been proposed which is applicable to all regular prismatic systems. This
has been used to find the appropriate beam-like flexibilities for trusses. The same approach can be
used for normal beams, giving values for the shear stiflnesses of various cross-sections as particular
results of a general theory embracing torsion. bending. extension and shear of regular prismatic
systems.

1 INTRODUCTION

It is perhaps surprising that even the macroscopic behaviour of a beam with a rectangular
section made from homogeneous, isotropic, lincarly-clastic material is not generally under-
stood. At least four different values for the shear stiffness of such a beam have been
suggested, in addition to GA where G is the shear modulus of the material and A4 is the
arca of the section. These arce

GA/1.2 (Washizu, 1968),

GA/1.5 (Timoshenko and Goodicer, 1970),
GA(l —=v?) (Lowe, 1971),

20G A1+ v)/3(8+ Sv) (Donnell, 1978),

where v is Poisson's ratio. Problems arise in defining what the shear behaviour is, and in
trying to differentiate the shear deflection from some local rigid-body rotation of the beam.

Consider the behaviour of a thin rectangular beam of depth / in a state of plane stress
induced by an exponentially decaying distributed load ¢, applied to the top surface of the
beam, where

q = qoe—u:/h‘ (I)

= being measured along the axis of the beam. A solution to this problem is given by

6. = [A(sinkx+kxcoskx)+ B(2coskx —kxsinkx)]e % )
1., = [Akxsinkx+ B(sinkx+kxcoskx)]e ™ 3)
6, = [A(sinkx~kxcoskx)+ Bkxsinkx]e 4)
where
k =alh (5
A = qq (sina+acosa)/(a* —sin’ a) (6)
B = —gqasina/(a* —sina) @)
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Fig. 1. Stress distributions for a = 1. (a) Axial stress, ... (b) Shear stress, ...

q q
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Fig. 2. Stress distnbutions Tor a = 10, (1) Axial stress, a.,. (b) Shear stress, 1.,

and v is the distance upwards from the base of the beam. Figures fa and 1b show the
bending and shear stress distributions respectively for the case when « is unity. These are
close to the lincar bending stress and parabolic shear stress distributions normally assumed
in the engineering theory of beams. However, suppose that the value of « is increased to
10. The bending and shear stress distributions are now given by Figs 2a and 2b, respectively.
Clearly, the ordinary engineering theory of bending is no longer applicable. It will be argued
that, in the latter case, the applied loading is varying so rapidly thut the beam is unable to
settle down to its “characteristic” response. Such a characteristic response may be inferred
from St Venant's principle.

A generalization of beam theory was previously proposed (Renton, 1984) which was
applicable to any regular prismatic system, including both beams and trusses. The usual
starting point for isotropic beam theory, that plane sections remain plane, was not only
meaningless in such a gencral context, but found to be incorrect for certiun anisotropic
beams (Renton, 1987). Implicit in the use of a beam theory is the assumption that the beam
responds in a characteristic way to a resultant load, regardless of the details of the way in
which that load is applied. From St Venant’s principle. the system should settle down to a
characteristic response to a resultant load at large distances from the zone where the load
is applied. If the resultant load is a bending moment. torque or axial force, its effect remains
constant along the system and so the characteristic response must be one of constant stress
and strain. For isotropic beams, it can be shown that this leads to the condition of plane
sections remaining plane in bending and under axial force, and to St Venant's theory of
torsion.

If a shear force is applied to the end of a beam, the state at large distances from the end
cannot be a steady state of stress and strain, as the shear force will induce a linearly-varying
moment. Instead, the state is characterized by a bending stress distribution which varies
linearly with the moment, plus a constant stress distribution related to the shear force.
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Suppose that such a state has been found. giving the necessary resultant moment and shear
force and satisfying the equations of equilibrium. compatibility and zero traction on the
lateral surfaces of the beam. This must then be the unique characteristic response of the
beam at large distances from the end where the shear force is applied. If this were not so,
then some other non-decaying state would exist. corresponding to the same resultant end
loading. Taking the difference of the two states would then give a non-decaying state of
stress corresponding to zero resultant applied end loading. thus contravening St Venant's
principle.

The problem is then reduced to finding the appropriate rate of shear deflection from this
characteristic response. This must be distinguished from any rigid-body rotation of the bar
about some lateral axis. because the shear deflection sought is due solely to an elastic
response to a shear force. As will be seen, this may be done by separating the strain energy
per unit length into bending and shear components. The latter may then be associated with
the work done by the shear force during the shear deflection of a unit length of the beam.
The shear force being known, the rate of shear deflection. and hence the shear stiffness, are
then determined.

2. SHEAR BEHAVIOUR OF ISOTROPIC BEAMS

The required characteristic behaviour of isotropic beams can be found in Chapter 11
of Timoshenko and Goodier (1970) for example. The stress distribution induced by the
shear force § at a distance = along the beam shown in Fig. 3 is given by

_ S:ox g
6:: = I ( )
O Sy? ) }
= oy gy HI) 9)
h]
= - o (10)

Iy

X
where ¢ is a stress function which satisfies the equation

o 3¢ _ v Sy _df .
O l+v I dy (an

on the cross-section, /() is a function such that

o Syt dy
a = [71 =~/ ‘-”] ds =0 (12

on the boundary of the cross-section, where s is measured around the boundary, x and y

S| z

x
Fig. 3. Shear force acting on a beam.
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are the principal axes of the cross-section through its centroid and [ is the second moment
of area of the cross-section about the y axis. Without loss of generality, ¢ can be taken as
identically zero on the boundary.

The bending strain energy per unit length, Uy, is given by the energy associated with
the linearly-varying components of stress and strain, or from (8),

| (57)°
UB—EJ; U::ﬁ::dA _—Z—EF (13)

where A is the area of the cross-section and £ is Young's modulus. The work done per unit
length by the bending moment, M say. is

Wy =My (14)

where i is the rate of change of flexural rotation. Defining a bending stiffness Ky and a
bending flexibility Fy such that

M=Ky, y=FM (15)
then (14) becomes
Wy = IM*F, (16)
Now at a distance = along the beam
M=S5: (17)

o that on comparing the bending strain energy per unit length with the bending work done
per unit length, from (13) to (17),

1
o =%

giving the usual value of £/ for the bending stiffness. Exactly the same result is given by
examining the constant characteristic response to an end moment M, when only the stress

is induced. Note that this solution is given by the differential of the shear solution with
respect to . The same relationship holds for all other cases including anisotropic beam
problems ; sec for example Lekhnitskii (1981).

The remaining strain energy per unit length, Uy, is associated with shear. From (9) and
(10). this is given by
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Fig. 4. Integration over the cross-section.

1 . s o a¢)‘}
US = é_(;- j“ (tx:’*'rv:)dl“ = zcj [(a ) + (a‘
Sx? dp Sx°
Now from Fig. 4,
a¢ 2 5 vy a(b (‘1¢
L <‘a}) = f f (@T)(m)“ dx
because ¢ is zero on the boundary. Likewise,

f (‘;"S) dd = —~ f é ~——dA (20)

Y1

’¢

3 y

— d,)d ¢(’f¢ d4d (19
¥y d}a Y =T 4 a}'f )

¥y

so that from (19) and (20),

26\ (¢ 3o ey dsf _“_,é‘z
TG+ Jaa = [ o (524 5)aa= [ o (6% e

from (11). Also

I _J‘:r; 2¢g‘—£d)'] de = _J‘ 24 (}*[dA
(22)

again, because ¢ is zero on the boundary. Then from (18) to (22).

1 Sx*)? df v Sy) ,
U"EEL[f 21]_¢<d}'+l+v T )4 23)

Now fand ¢ will be proportional to §. so that it is convenient to define
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(24

where F and ® are not functions of S. Then if A and F; are the shear stiffness and shear
flexibility of the section under the action of S. the work done per unit length by the shear
force on the section due to the shear deformation of the section. is

W= 1S°F (33)

[cf. (16)]. Then on comparing the work done by the shear force per unit fength with the
shear strain energy per unit length, from (23) to (235).

| ! AN dF vy
e Fy= s | Fmoxt) o S5+ 2 )aa 2
g=F=gr L( 5% ) (D(dy + !+v>d (26)

3. SHEAR STIFFINESSES OF VARIOUS SECTIONS

The following results are derived from the analyses in Chapter 11 of Timoshenko and
Goodier {1970).

3.1, Rectangudar sections
For a rectangular section ot depth 2a¢ and breadth 25,

h . ~ . .

RITTE Y AN ATy

S - e € . 4
F=3a., &= _5_ E U tm (.()s( » s

IR TR

where

B s) 8h(— 1y "
Byt = v/ @ Qi+ Dn[QQm+ 1)/ (2a)” + (b))

so that from (26),

‘o s i+ Dax | fnny
F Gl*J J ~(a —-x%)? ——mz” t}Z{( ) ~,,,,,_,,c:us( y )sm( P )d\dz

where
= tha', A = 4ba.

This gives

1 1 (6 v Y & & 144(h/u)*
Kg =F= GA [5 +<|+ v) ,,;S;‘(, »;: n°(2m+1)n’ [(’m+ - (h 2a)’ +n? ]]

When v is zero, or as b/a tends Lo zero, this gives

Lop=l2 27
Ks = 7% i}

which corresponds to the result given by Washizu (1968) and Young (1989). Using the
results
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- 1 n* . 1 AR B x

Z I T S Z Pme 1~ 96" Z = Z
oy Cm+ 1) 8 (2m+1)" 96 6

m=0 n=

as b a tends to infinity, the values tend towards

where
Ci =02 (hjaxl10). C,=1.0 (hla>»1.0)

and some other values are given by

h/tl (') c,
0.4 0.1939 :
0.2 0.1878 - -
0.5 0.1695 -
1.0 0.1392 0.1392

2.0 — 0.3511
5.0 — 0.6699
10.0 - 0.8229

3.2. Circular sections
For a circular section of radius R,

F=i(R—ph), 0=— 22 (R1_py,
IR S TT prrs) Y
where in terms of polar coordinates (r, 0),
y=rcosd.

Then

1 | A Il I 12 I 42v v R v
-K;=Fs=5—’5-[) J:) ;l-(R —r") (R —r")r-cos 0<l—|———>rd0dr

T 8(1+v) +v

=6‘c'7[7+<

where

v
1+v

1961

(28)

(29)

(30)

o
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_nR4
==

-+

A=nR".

I

This may be compared with the value of 10/(9GA4) quoted by Young (1989).

3.3. Elliptic sections

For an elliptic section with semi-axes of lengths a and b in the directions of the x and
¥ axes respectively,

(1+v)a* +vb* sie 1 ara
¢ = 5 . —(xb? 22 ply
217-(|+v)(3a-+h-)(v b*+ya’—a’h)y

aZ(hl’ __}.2)
F=—%

I I (a*'(x* ¥ ¥ (+v)ia*=v* & | (x: p? )
— = = -5 -\ — =1 5 3 = 5 P = + =1 ]dA.
k= B=gr L a <a~ t e ) T ST A o sl

This integration can be carricd out in two ways. One is to use the coordinate transformation
x = psinh ficosa, y = pcoshfisina

where
pl=b'=d?, dA4 = p*(cos*a+sinh® f)dadp

and the limits of integration are
a=0 to 2, f=0 to sinh '(a/p).

Alternatively, a double coordinate transformation can be used, where
' b
X=x, Y= d4="dxdy
b a

which transforms the boundary into a circle of radius a, and then polar coordinates (r, )
can be used, where

X=rcosl, Y=rsin0), dXdY =rd0dr.

This yields the same result more readily, giving

o l 2(a*+5?) < v )1 ab* ] ,
E“FS_‘SGA [6+ W +hT T \T+v a*Ba*+b%) [ 32)

It will be seen that in the particular case when a = b, this reduces to the expression for a
circular section given by (31).

3.4. A triangular section

A closed form of solution exists for an equilateral triangular section of side 2\/3a
made from incompressible material (v = 0.5) with a shear force acting parallel to one side.
Then
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F=!Qa+: ®=l[~Qa+»](-a)

where the side parallel to the shear force is given by v = a. After some simplification, this
gives

l l b 1(9 b b a b 4
= Fo= i = 12a+ ) 109x =T  —=8a> = 12ay = 33
K Fs %CT L [x°—3(2a+3)](9x v —8a”—12ay)dA ica (33)

where
4
1=3‘4—“—. A4 =3/3d

This may be compared with the value of 6/(5GA4) quoted by Young (1989).

4. SLOPE-DEFLECTION EQUATIONS MODIFIED FOR SHEAR

In conformity with the methods used to find the bending and shear stiffnesses of beams,
the slope-deflection equations may also be determined from the strain energy of a beam.
Consider a cantilever of length /, fixed at its right-hand end. B, and loaded by a clockwise
moment M, and upwards shear force F, at its left-hand end. A. The strain energy stored
in the beam is then

L ) (R .
U,—‘z-‘[, g Ma+Fa2) d-+-2J; kSFAd-. (34

The clockwise rotation, 03, and the upwards displacement, 8%, of end A are given by

)0 -
Oa oM, El  2El (35)
U  MP F [l
N == A 2 A (44
A=0F = 2er Tap U (36)
where
12E1
s = 7{5? (37)
These equations can be inverted to give M, and F, in terms of 8% and 33,
El 6
(I+5)M, = 7[(4+S)02- 70'1\’:] (38)
E! 6 12
(14+5)F, = -I*‘ |:— 702'1‘ 'lj()x] (39)

Suppose that a rigid-body movement is given to the bar and the fixed end as a whole, so
that the right-hand end now has a clockwise rotation ¢y and an upwards displacement J.
The rotation, ,, and the displacement, J,. of the left-hand end are now

OA = 02+05. (5,\ = 62+0n1+6“. (40)

Using these relationships to substitute for 85 and J3 in (38) and (39) gives the general
results
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6
A = - - {0\ —0
1. e [(4+s)f)a+( siig [(0,\ 09)] 4D
El 6 12 . .
e {‘ 7 On+ 0+ 55 “’A"’”J' @)

The clockwise end moment My and upwards shear force Fy at the end B can be determined
from statics, giving

El 6 .
My = ii+3) [:(2_5)9A+(4+S)08“— ?(0,\“03)] (43)
EI 6 12
5= ) [? (0, +6)— T_ (N ‘_58):}' (44)

These equations reduce to their more normal forms on taking s as zero, which corresponds
to an infinitc shear stiffness.

If the end moments and shear forces are applied by axial and shear stress distributions
of the characteristic form, then the slope-deflection equations are exact solutions in terms
of the small deflection theory of clasticity. If the end loadings are not of the characteristic
form, then from St Venant's principle, they will decay towards the characteristic forms
away from the ends, and the overall behaviour of the beam, as given by the slope-deflection
equations, will remain an approximation.

S. THE GENERAL THEORY

It should be borne in mind that the above results were obtained for homogencous
isotropic beams, where the flexural distortion is directly related to the bending moment
induced by the shear force and the shear distortion directly related to the shear force. The
lack of coupling means that the bending and shear stitfnesses are simply the reciprocals of
the corresponding flexibilities. More generally, & torque may produce flexure in an aniso-
tropic beam {Renton, 1987), or an axial force produce shear distortion in a truss (Renton,
1984). In the latter paper, shear stiffnesses for trusses were found by similar energy methods
to those used above.

Allowing for all such possible couplings, the flexibility equations relating resultant
loads to their corresponding distortions become

oo S fo fu fis Sl [T
V. Soo [ o fu S ful | M

v, oo Sar S Siw Sis o S M,
e | TS S fo Su S Sl | P (43)
Vs Fsio Sao fsv Ssa Sss Sse S.
v _fnl for Jox  fos Sos f‘“‘, L S, |

where {0, Y. .. & y.. 7} arc the rates of twist, flexurc about the x and y axes, axial
extension and shear distortion in the v and » directions and {T, M, M. P, S, S,} are the
local torque, moments about the x and 3 axes, axial force and sheur forces in the x and y
directions. To find the corresponding stiffnesses. it is then necessary to invert the whole
flexibility matrix.

In the general case, it becomes necessary to define what is meant by the rates of twist,
flexure, axial extension and shear, as no single cross-section necessarily typifies the overall
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x
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Fig. 5. Three adjacent segments of & prismatic system. (a) Before loading. (b) After loading.

response. Figure 5 shows three adjacent identical segments of the system. These are not
necessarily brick-shaped as shown, but could be similar lengths of a castellated beam or
bays of a truss. After loading with a bending moment, torque or axial force, the characteristic
response is such that the corresponding strains in each segment are the same. The deflections
in adjacent scgments then differ only by some relative rigid-body displacement of the two.
Morcover, this relative motion will be the same between all adjacent segments, so that for
cxample the motion of the third segment relative to the first is twice that of the second
relative to the first. This means that constant rates of torsion, flexure, extension and shear
are expressed by such relutive rigid-body rotations and displacements, even when the system
is regular rather than uniform. Thus (45) relates the complete set of such relative motions
to the complete set of resultant loads.

It follows from Betti's reciprocal theorem that the matrix is symmetrical (f, = /).
Suppose that in (45) the distortion and load vectors are written as {d,,d,, dy, dy, ds, dy)}
and 1P, Py Py, P Py, P}, respectively. The equation then takes the form

d;=3 f,P (i=1-6). (46)

=1
The work done per unit length, W, by the loads in deforming the system is then

1 I

W=

ta
LS 2

& 6 6
Z P,’d;‘ = Z Z P,j;;P;. (47)
te=} =] jemi

This is equal to the strain energy per unit length, U. Then

U aw 1
PGP, " &P 0P, = 5 UiitSi) =i (48)
Then if the strain energy per unit length can be expressed as a quadratic in terms of the
loads P, the flexibility coefficients can be found.

Even in the most general case, a limited degree of uncoupling can be achieved. A
suitable orientation of the x and y axes can be chosen so that a moment about onc axis
does not produce flexure about the other (f3; = f3; = 0). The lines of action of the forces
could be redefined so that the axial force P acts along a line parallel to the - axis, through
points with coordinates (x,. vo). and the shear forces taken to act through points with
coordinates (x..y.). This means that the torque and bending moments acting have to be
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redefined as 7%, M? and M?. where, to give the same resultant loading. they are related to
the original loading by

T=T~pS+xS, (49)
M, =M +y,P (50)
M, =M —x,P. (51)

Consider each segment of the system to have a reference plane initially perpendicular to
the = axis which undergoes the same overall rotations and displacements as the segment. A
new axial strain &’ and shear strains 7§ and 7§ can be defined in terms of the relative axial
displacements of the points (x,. ) and shear displacements of the points (x, v.} on these
planes. From geometrical constderations. these are

e = v — X, +e (52)
o= —rl+y, (53)
Vo= x4y (54)

Equations (49)-(54) can be used in conjunction with (45) to derive a new matrix of flexibility
cactlicients /¥ relating the load vector [ T4, M), M), P, S.. S,} to the distortion vector {0,
oot &0 yS v The symmetry of the flexibility matrix is retained. In particular, by
choosing

s Sis
Xe= =", y.=" 55
§ S ! S (33)
./‘u/.‘:"‘fu/‘w
Xy = . . ST 56
' FET IR SV AT (56)
_ Iudn/adn (57)

Fo= SoaSv= IS

St e St and f4 (and therefore S35, 8, /4 and /1) are zero. These uncoupling
conditions can be thought of as defining a ““centroid™ with coordinates (x,. »,) und a “shear
centre™ with coordinates (x,, 3.) in the most general case.

Further uncoupling can be inferred from any summetry of the system. For example,
if the system is invariant under inversion of the = axis, all the remaining coupling terms,
with the possible exception of f5, and fis, will be zero. The cases examined in Section 3
cxhibit no coupling, and the shear deformation is related to the deflection of the original -
axis of the section.

6. CONCLUDING REMARKS

Shear stiffnesses for a variety of isotropic bars with simple cross-sections have been
found, using a generalization of engineering beam theory. All these results give shear
stiffnesses which are less than those quoted by Young (1989). Unlike any of the previous
results listed, the expression for the shear flexibility of a rectangular section with a constant
cross-scctional arca shows that it increases in proportion to (b/a)° as the section becomes
a very thin, flat strip. However, since the bending flexibility of the section will increase in
proportion to h/a. the result is not so surprising. Also, from (32), it will be seen that a very
broad, shallow elliptic section exhibits similar shear behaviour.

In only the case of a triangular section was the solution found in terms of a specific
value of Poisson’s ratio. In all other cases, the shear stiffness can be written in the form
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GA
v 2
B+C(—)
I+v

where B and C are positive constants depending on the geometry of the section, and B is
greater than unity. It may be conjectured that this is the general form of the result.

Ks'—'
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